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The solution of sharp-cone boundary-layer equations 
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A detailed study has been made of the solutions to cone boundary-layer equations 
in the symmetry plane in order to increase understanding of the mathematical 
nature and physical meaning of these solutions. A typical set of symmetry-plane 
solutions is presented. Included in this set are various solution branches not 
previously published. A double-valued solution curve is found which has not 
been studied prior to this time except at one trivial point. The extension of an 
existing solution branch through a removable singular point has also been 
accomplished. The solutions presented are categorized according to whether they 
are dependent on or independent of the boundary layer outside the symmetry 
plane. The region in which no solutions to the usual symmetry-plane equations 
exist is examined. Solutions in which the usual boundary-layer model predicts 
that conservation of mass is not satisfied at  the symmetry plane are discussed. 
Non-analytical behaviour at the symmetry plane is also investigated. In both of 
these cases a boundary region exists at  the symmetry plane. 

1. Introduction 
The purpose of this paper is to investigate, very generally, the behaviour of the 

solutions to the cone boundary-layer equations in the vicinity of the plane of 
symmetry. The boundary-layer equations for a sharp cone at  an angle of attack 
were first derived by Moore (1951). The solutions considered herein are the first- 
order inner expansions of the Navier-Stokes equations as discussed, for example, 
by Van Dyke (1964, p. 126). Higher-order terms in the expansion are not 
considered. Consistent with this is the neglect of the vortical sublayer on the 
body and the vortical singularity shown by Ferri (1950) to occur in the leeward 
symmetry plane. When the boundary and vortical layers are of comparable thick- 
ness there is, of course, aninteraction, but this interaction belongs to higher order 
boundary-layer theory (Van Dyke 1969) and, therefore, neglecting it is consistent 
with the restriction to the first-order expansion of the Navier-Stokes equations. 

The solutions to the cone boundary-layer equations in the symmetry plane 
have been discussed by Moore (1953, 1956)) by Reshotko (1957) and by Cheng 
(1961). Trella & Libby (1965) and Libby & Liu (1968) considered a more general 
plane-of-symmetry problem in which there is a pressure gradient along the plane. 
The complete boundary-layer equations have been integrated numerically by 
Vvedenskaya (1966)) Boericke (1969) and Dwyer (1971). 
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In $ 2 ,  the complete cone boundary-layer equations (Moore 1951), as well as 
the usual symmetry-plane equations (Moore 1953), are given. Section 3 sum- 
marizes the results of a numerical study, the intent of which was to obtain as 
many solutions to the symmetry-plane equations as possible. Solutions in 
agreement with published solutions are found. A new solution branch for k 
positive is presented, as well as a new double-valued branch for negative k. At 
all points in k space at  which solutions are found the solution curves are double- 
valued. In  certain regions of k space, no solutions were found, however. The 
domain of dependence of the symmetry -plane solutions presented is discussed. 
Section 4 discusses the behaviour of published solutions to the complete boundary- 
layer equations in the vicinity of the symmetry plane when the behaviour is 
non-analytic at  this point. Two types of non-analytic behaviour are discussed. 

2. Derivation of equations 
The three-dimensional boundary-layer equations for a sharp cone, written in 

terms of x, the co-ordinate along a cone generator, 4, the cone azimuthal angle, 
and y, the co-ordinate normal to the cone surface, are the continuity equation 

(pur), + ( P V T ) y  + (PW)$ = 0, 
the x-momentum equation 

w w2dr 1 
r r dx P uu,+vu~+-u$--- = - (Pa, 1, 9 

the q5-momentum equation 
w uwdr i ap I 

uw, + vwy +- W $  + - - = - - - + - (ruwar)y 
r r dx prd4  p 

and the energy equation, in terms of the total enthalpy H ,  

It has been assumed that the Prandtl number is unity. If it is further assumed 
that the fluid is a perfect gas and that the viscosity varies as the absolute tem- 
perature, then the preceding equations may be simplified by introducing the 
following quantities. A new independent variable 7 is defined as 

The definitions of the new dependent variables are 

fq = u/ue, 9, = w/we, 
0 = (H  - H,)/(He- H,). 

Substitution of (5)-(8) into (1)-(4) yields 
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2 awe 1 dp we 
we dq5 pdq5 ue 
--+---- 

2 I d w e  P " - ~ ;  - 2 We 

+--- 3sm8ue d$ [ p ] 3sineue [g,g,$-g+g,,], 

sin8 g0,  1 
= L ? U e [ s @  3sin8ue + -g + 0 J *  

The density ratio pe/p appearing in (10)  is given by 

u," + w," 
P 

The boundary conditions are 

f = f , = g = g , = O = O  for q = O , )  

j = g = o = I  7 ,  as q+co. I 
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In  the plane of symmetry the preceding equations simplify considerably. In  
this plane, w, is zero and, thus, if the dependent variables and their derivatives 
remain finite (9), (lo), and (11) reduce to 

f,,, + (f + Wf,, = 0, (14 )  

@ = f  9' (16)  

where the parameter k defined by Moore (1953) has been introduced: 

2 dw, 
3uesine d$ ' 

k=-- 

3. Solutions to the plane-of-symmetry equations 
The solutions presented herein were generated using a Runge-Kutta numerical- 

integration technique, with the symmetry-plane equations treated as an initial- 
value problem. It was thus necessary to iterate on fV7 and g,, at the wall in order 
to satisfy the edge boundary conditions. The iteration converged very nicely 
except for the new solution branch found for positive k. (The solutions are 
discussed in detail in the succeeding paragraphs.) On the branch where difficulties 
were encountered, it was possible to obtain convergence if small enough steps in 
k were taken from one solution to the next. Consequently, all the solutions to be 
discussed were generated in the same manner, although it is olear in retrospect 
that a more sophisticated numerical technique is desirable for this problem. 
A conservative estimate of the accuracy of the solutions generated is five 
significant figures. 
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Moore (1953) investigated the asymptotic behaviour of solutions to the 
symmetry-plane equations and found two asymptotic solutions, one with 
algebraic behaviour and one with exponential behaviour. The solution with 
algebraic behaviour only decays if k < - 8. For k < - I neither solution decays 
and, therefore, no solutions exist in this region. In  a later paper, Moore (1956) 
states that the solutions which decay algebraically must be rejected on physical 
grounds because they do not have a finite displacement thickness. The solutions 
presented in this section all exhibit exponential decay at  infinity and, therefore, 
have finite integral thicknesses. A generalization of the method used by Libby 
(1967) was used to check the numerical solutions for the desired asymptotic 
behaviour . 

To obtain solutions to the cone boundary-layer equations in the plane of 
symmetry, (14)-(16), three parameters must be specified. The first of these, 
I c ,  appears explicitly and is defined by (17). It is this parameter which is of 
primary interest here. The remaining two parameters appear in expression (12) 
for pe/p and are the ratio Hw/He of the wall to free-stream total enthalpy and a 
parameter related to the square of the edge Mach number, u3/2ht:. It is not the 
intent of this paper to provide an extensive catalogue of solutions to the plane-of- 
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FIGURE 2. Values of g,,, (7 = 0) in plane of symmetry. 

symmetry equations.? Instead, a typical set of solutions with the parameter k 
variable and the other two parameters held constant will be presented to  illustrate 
the behaviour of the velocity profiles as a function of k. A value of H,/H, = 0.4 
and a value of 4 / 2 h ,  = 8.0 have been used in the results reported in the succeeding 
paragraphs. 

Figure 1 shows the wallvalues of f,, (and 0, = f,,) plotted versus the parameter 
k for the plane-of-symmetry solutions. In figure 1, one branch of the curve is 
solid and the other dashed; in succeeding figures this coding is retained so that 
corresponding curves may be easily identified. The behaviour of the wall values 
of g,, is shown in figure 2. Most of the published solutions to (14) and (15) are for 
k positive and correspond to the solid curve in figures 1 and 2. As this curve is 
followed into negative k space the branoh point found by Cheng (1961) is 
approached. The behaviour of the solution as k = 0 is approached on the dashed 
branch has apparently not been characterized previously. The boundary layer 
thickens, fVt decreases and g approaches infinity like k-l. This singular behaviour 
may be removed by defining a new variable 

h = kg. (18) 

-j- A paper by Roux (1972), published while this paper was being refereed, presents 
additional riolutions and interpretation of the solutions considered herein. 
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FIGURE 3. Values of h,, (7 = 0 )  in plane of symmetry. 

Thus, (14) and (15) become 
.f,,,+ ( f+h)f , ,  = 0, 

h , , , + ( f + h ) h g , + ( k + ~ ) k ( p e / p ) - ~ ~ , h , - h ~  = 0, 

with boundary conditions 

(21) 
- 7  f = f  = h = h  7 = O  for q = O ,  

f 1 = l ,  h , = k  as q+oo. 

Using this formulation, a second and new solution at  k = 0 may be obtained. 
This solution is an 'incompressible' solution, and the values of fT, and h,, (0.0335 
and - 0.0931, respectively) are common to all curves, regardless of the values of 
the wall temperature and edge Mach number. Figure 3 shows the variation of 
h,, at the wall with k in the region of k space in which use of h rather than g is 
convenient. Note that the velocity w is well behaved as k + 0 on this (the dashed) 
branch, even though g, is singular. Combination of (7), (17) and (21) with the 
following expression valid for small 4, 

we = (dweId9) 4, (22) 

(23) gives w = 4 sin 8ue 9 h, + terms of higher order in 4. 
Thus w is finite (going to zero with 4 )  for finite h,. For k = 0, wegoes to zero like $3 
and thus the w-velocity profile becomes one of pure overshoot. 

This new (dashed) solution branch returns to positive k space, undergoing 
a rather abrupt change in direction at  a value of k of about 0.0028. (See figures 1 
and 3.) A careful study of the solutions in this region has shown that the slope of 
the curves is continuous. That is to say, there is neither a cusp nor an intersection 
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FIUURE 4. “ypiaal u-velocity (f7) profiles. 

of two separate curves at this point. Following the curves out in positive k space 
reveals no further drastic changes. 

A second double-valued solution curve (figures 1 and 2), which, except at  one 
point, has apparently never been discussed, has been found for values of k between 
- 0.6656 ”~ and - 1. The exceptional point is k = - ?j and the solution there may be 
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FIGURE 5. Typical w-velocity (9,) profiles. 

obtained from the flat-plate solution of Moore (1951). At this pointf and g are 
equal and the solution is Blasius-like. There is also a second solution at k = - 6 
with f $: g .  Note that for both the k = - 6 solutions the density terms drop out of 
(14) and (15), and these two ‘incompressible’ points are common to any curve 
(figures 1 and 2 ) .  (P. A. Libby, in a private communication, has indicated that at 
least two more solutions exist in this region of k space.) 

Typical velocity profiles associated with the solutions discussed above are 
given in figures 4, 5, and 6. The evolution of the velocity profiles as k varies from 
positive to negative, along the solid curve in figures 1 and 2, and back to positive, 
along the dashed curve, will be discussed. The behaviour of the u-velocity profiles 
shown in figure 4 (a )  changes little with k as k decreases from 1.2 to - 0.079, and 
is always very much like that of a Blasius profile. When the branch point has been 
passed changes begin to occur much more rapidly. In  figure 4 (a )  the u-velocity 
profile becomes more and more inflected until it looks very much like a shear 
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FIGURE 6. Typical w-velocity (h,) profiles. 

layer profile, at  k = 0.00275. As k approaches zero, g, (figure 5 (a)) goes to infinity 
and, therefore, the w-profiles for small k are best shown in terms of h, as in 
figure 6. As k is increased beyond 0.00275, the tendency for the boundary layer 
to thicken is reversed. In  figure 4 ( b )  the u-velocity is seen to evolve into a profile 
with a rather extensive constant-velocity region. All the positive-k solutions on 
the dotted branch have reverse flow in the q5 direction. The evolution of g, from 
a profile which is predominately a reverse flow t o  a forward-reverse-forward 
profile is shown in figure 5 (a). 

The velocity profiles associated with the left-hand solution branch do not 
change nearly so much as those discussed above. It is obvious from inspection of 
(14) and (15) that, for k = - $, one solution for both f, and g ,  is Blasius-like. This 
solution is shown in figures 4 (c) and 5 ( b )  along with solutions for other typical 
values of k. All the a-velocity profiles shown in figure 4 ( c )  are very similar, and 
there is a very small difference between any two solutions at  the same value of k. 
The w-velocity solutions evolve from the Blasius-like solution to a solution with 
a substantial reverse flow near the wall. As k approaches minus one, the dashed 
velocity profiles overshoot and approach unity from above while the solid ones 
asymptote from below. This appears to be the only significant difference between 
the two branches of this solution curve. 

Because of the non-uniqueness of the solutions in k space, it is useful to look 
for physical or mathematical differences between the solution branches. It has 
been found that on the solid branch of the right-hand solution curve the inequality 

f + k g  > 0 (24) 

is satisfied for any value of 7. On the dotted right-hand solution branch, the 
inequality (24) is satisfied in part of the boundary layer and violated in the rest 
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of the layer. At the branch point the inequality becomes an equality on the body. 
Although (24) characterizes the difference between the two branches of the right- 
hand curve, it does not do so for the left-hand one. Except at k = - 1 , ~  + co, all 
the solutions on the left-hand curve satisfy (24) everywhere. 

The physical significance of (24) is as follows. For those symmetry-plane 
solutions which satisfy (24), the streamlines which enter the edge of the boundary- 
layer asymptote onto the body in the sense that the streamlines cross lines of 
constant r .  For those solutions which do not satisfy (24) everywhere, the stream- 
lines in the symmetry plane enter the boundary layer and asymptote onto some 
line of constant 7. The portion of the boundary layer below the asymptote is, 
therefore, occupied by fluid which has entered the symmetry plane from the side. 

The domain of dependence of three-dimensional boundary layers has been 
investigated by Wang (197 1). He concluded that the origin of the streamlines 
determines the domain of dependence of the boundary layer at a given body 
location. In  the present case, therefore, it is clear that the solid branch of the 
right-hand solution and all the left-hand solutions have only the symmetry plane 
as the domain of dependence, since all of the boundary-layer streamlines originate 
in this plane. The right-hand dashed solutions are such that a finite region in the 
boundary layer is occupied by fluid which entered the symmetry plane from the 
side, and therefore solutions on this branch are in the domain of dependence 
of some region adjacent to the symmetry plane as well as the symmetry 
plane. 

Wang ( 197 1) argues that the domain of dependence of the three-dimensional 
boundary-layer equations is determined by the sub-characteristics of the 
equations and he shows that the sub-characteristics are streamlines. The sub- 
characteristics of the system of equations (9)-(11) are the streamlines in $, 
7 space and are given by 9- - kg,dr 

$ - Ef+b+0($2)1' 
It is obvious from inspection of (25) that there is a node-type singularity at  $ = 0, 
where f+kg = 0. Thus, when inequality (24) is not satisfied everywhere, the 
streamlines or sub-characteristics actually enter the symmetry plane at  the 
singular points of (25). Dashed-branch solutions on the right-hand curve have 
one singular point for values of k < 0.0030 (approximately the turning point in 
figure 1). At  larger values of k, there are two singular points of (25) in the dashed- 
branch boundary layer. 

4. Non-analytic behaviour at the symmetry plane 
It is of interest to investigate the behaviour of the boundary-layer solutions 

at  the symmetry plane in the region - 0-665 < k < - 0.079, in which no solutions 
to the usual equations were found. The mathematical reason for the iion-existence 
of solutions t o  the symmetry-plane equations willnot be investigated; rather, it is 
assumed that integrating the complete boundary-layer equations from a wind- 
ward to a leeward plane gives a unique result at  the leeward plane, whether 
solutions to the usual symmetry-plane equations exist or not. 
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Boericke (1969) and Dwyer (1971) have integrated the complete equations 
around the cone in regions where symmetry -plane solutions are non-existent and 
have reported very large values of g, as the leeward symmetry plane is approached. 
Boericke (1969) published a family of g, profiles very near the leeward symmetry 
plane. A careful study of these results indicates that g, is singular like 6-l (where 
$ = 0 is the leeward symmetry plane). The usual symmetry-plane equations are 
obtained from the complete equations by assuming that g is finite; thus the 
singular solutions do not satisfy (14)) (15) and (16). 

Since we ordinarily goes to zero like $ at the symmetrj plane and if g is O(q5-l), 
then, from the definition (7), w is non-zero at  the symmetry plane. Thus, the 
result is obtained that an integration of the usual boundary-layer equations 
around the cone may predict a finite $ velocity into the symmetry plane from 
both sides. This predicted behaviour cannot exist in reality. Because the com- 
plete equations are parabolic with $, the time-like direction, no boundary condi- 
tion may be imposed at  the leeward symmetry plane to correct this behaviour 
(if w is from windward to leeward). The physically relevant solution at the 
symmetry plane, in this case, must be obtained by inserting a boundary region at 
the symmetry plane. The derivation of the governing equations in this boundary 
region is beyond the scope of the present paper. However, it is expected that the 
derivation would follow lines similar to those taken by Rubin (1966) for corner 
flow and Stewartson (1961) for flow past a quarter-infinite plate. 

If the usual boundary-layer equations predict a finite w-velocity at the leeward 
symmetry plane, then the maximum velocity wmax should have a series expansion 

wmax/ue($ = 0) = co+c1q5+c,$2+ ... . 
Using the solutions plotted in figure 5.7 of Boericke’s (1969) thesis, figure 7 has 
been constructed. The maximum velocity into the leeward symmetry plane for 
this case is less than 0.1 per cenb of the edge velocity. 

To summarize, the numerical solutions of Boericke (1969) and Dwyer (1971) 
indicate that when solutions to the usual symmetry plane equations do not 
exist, the complete boundary-layer equations predict finite w-velocities at the 
leeward symmetry plane. The evidence is not sufficient to determine whether or 
not other types of behaviour are also possible. 

The solutions discussed in the preceeding paragraphs are characterized by 
finite and discontinuous w-velocities at  the symmetry plane. Moore (1951) has 
solved the usual boundary-layer equations on a flat plate with two intersecting 
straight lines as a leading edge. This solution is an exact solution of (9)-( 12) and 
is sufficiently well behaved to satisfy (14)-( 16) at the symmetry plane. Moore’s 
(195 1) solution does, however, have discontinuities in the velocity derivatives 
with respect to $ at the symmetry plane and, therefore, a boundary region must 
be inserted to model the flow correctly. Moore’s solution is for k = - 8; it is of 
interest to determine where else in k space this type of discontinuity may exist. 
To do this, we expand the dependent variables in series about q5 = 0 and sub- 
stitute these into (9)-( 12). Equations (14)-(16) are obtained by collecting terms 
of zero order in q5; collecting terms of order q5 defines an eigenvalue problem. The 
eigenvalues are the points in k space where the Moore-type non-analytic behaviour 

43-2 
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FIGURE 7. Maximum $-velocity near the leeward plane of symmetry for 7.5' cone at  
Mach 3.1 ; a = 1.5'. 0, Boericke (1969) ; __ , straight line drawn through the points. 

Eigenvalue Solution branch Eigenvalue Solution branch 

- 0.0666 Solid - 0.671 Solid 
- 0.0228 Dashed - 0.667 Solid 

0.00204 Dashed -+  Dashed 
0.00409 Dashed - 0'679 Dashed 
0.302 Dashed - 0'725 Dashed 

- 0.860 Solid 

TABLE 1. Eigenvalues in k space for Hw/He = 0.4 and u:/2he = 8.0 

may occur. The actual eigenvalues, corresponding to the family of symmetry- 
plane solutions given in $3,  are presented in table 1. 

The two situations in which a boundary region is required at the symmetry 
plane differ as followe. In  the first case, the boundary region smoothes out dis- 
continuities in w, g, is infinite and the solutions do not satisfy (14)-( 16) as $ + 0 
outside the boundary region. In  the second case, the boundary region smoothes 
out discontinuities in certain shear stress components, g, is finite and the solu- 
tions for $ + 0 outside the boundary region satisfy (14)-(16). Thus, in those 
regions of k space where no solution t o  (14)-(16) exists, a boundary region is 
apparently required to model the flow at  the symmetry plane correctly. In  those 
regions of k space where solutions to (la)-( 16) do exist these solutions correctly 
model the flow at the symmetry plane, except at  certain discrete points, such as 
those given in table I. At these points in k space, a boundary region is required to 
model the flow at the symmetry plane adequately, if the magnitude of the corre- 
sponding eigenfunction is non-zero. If the magnitude of the eigenfunction is zero 
then no boundary region is required. 



Solution of sharp-cone boundary-layer equations 677 

5. Discussion and conclusions 
A detailed study of the plane-of-symmetry equations has produced solution 

branches not previously published. The double-valued solution curve for 
- I < k < - 0.6656 has not been studied prior to this time, although one solution 
on this curve at  k = - #was first given by Moore (1951). In addition, a completely 
new solution curve has been found for k positive. These solutions are interesting 
because they are not only exact solutions in the symmetry plane, but they are 
also expected to indicate, in a qualitative sense, the kinds of velocity profiles to 
be found outside the symmetry plane. 

The conditions for the plane-of-symmetry boundary layer to be independent 
of or dependent upon the out-of-plane flow have been given. The branch point on 
the right-hand curve divides the solutions which are in the domain of dependence 
of only the symmetry plane from those in the domain of dependence of the out- 
of-plane flow. The existence of discontinuous velocity derivatives at the plane of 
symmetry is shown to be a defect in the usual boundary-layer model. The 
behaviour of published complete boundary-layer solutions in the region where 
the symmetry-plane solutions do not exist has been examined. It is concluded 
that the boundary-layer model has a lower order defect in this case and that the 
w velocity is discontinuous. 

The boundary -layer equations have been found to give physically unsatis- 
factory solutions in the leeward symmetry plane when the velocity or the deri- 
vatives of the velocity are discontinuous. Very similar situations may be found 
in the literature. Viscous flow past a quarter-infinite plate has been considered by 
Stewartson (1961) and corner flow by Rubin (1966); in each case a system of 
equations, valid in the corresponding boundary region, was derived. It is pre- 
sumed that the method of matched asymptotic expansions (see, for example, 
Van Dyke 1964, p. 121) could also be applied to the present problem and 
a boundary region formulation valid near the symmetry plane produced. 
This technique would resolve the problem associated both with discontinuous 
velocities and discontinuous derivatives which have been found to occur at  
the leeward symmetry plane. 

Although all the results presented herein are specifically for a sharp cone, 
similar behaviour and problems with the boundary-layer model should be 
expected along the symmetry planes of more general three-dimensional bodies. 

R E F E R E N C E S  

BOERICKE, R. R. 1969 The laminar boundary layer on a cone at incidence in supersonic 
flow. Ph.D. thesis, Polytechnic Institute of Brooklyn. (See also 1970 A.I.A.A. 8th 
Aerospace Sciences Meeting Paper, 70-48.) 

CHENG, H. K. 1961 The shock layer concept and three-dimensional hypersonic boundary 
layers. Cornell Aero. Lab. Rep. AF-1285-A-3. 

DWYER, H. A. 1971 Boundary layer on a hypersonic sharp cone at  small angle of attack. 

FERRI, A. 1950 Supersonic flow around circular cones at angles of attack. N.A.G.A. Tech. 
A.I.A.A. J .  9, 277-284. 

Note. no. 2236. 



678 J. W .  Burdock 

LIBBY, P. A. 1967 Heat and maw transfer at  a general three-dimensional stagnation 

LIBBY, P. A. & LIU, T. M. 1968 Some similar laminar flows obtained by quasi-lineariza- 

MOORE, F. K. 1951 Three-dimensional compressible laminar boundary-layer flow. 

MOORE, F. K. 1953 Laminar boundary layer on cone in supersonic flow at  large angle of 

MOORE, F. K. 1956 Three-dimensional boundary layer theory. Advances In  Applied 

RESHOTKO, E. 1957 Laminar boundary layer with heat transfer on a cone a t  angle of 

Roux, B. 1972 Supersonic laminar boundary layer near the plane of symmetry of a cone 

RUBIN, S. G. 1966 Incompressible flow along a corner. J .  Fluid Mech. 26, 97-1 10. 
STEWARTSON, K. 1961 Viscous flow past a quarter-infinite plate. J .  Aero8pace Sci. 28,l-10. 
TRELLA, M. & LIBBY, P. A. 1965 Similar solutions for the hypersonic boundary layer near 

VAN DYKE, M. 1964 Perturbation Methods in Fluid Mechanics. Academic. 

point. A.I.A.A. J .  5 ,  507-517. 

tion. A.I.A.A. J .  6 ,  1541-1548. 

N.A.G.A. Tech. Note, no. 2279. 

attack. N.A.C.A. Rep. no. 1132. (See also 1952 N.A.G.A. Tech. Note, no. 2844.) 

Mechancis, 4, 159-228. 

attack in a supersonic stream. N.A.C.A. Tech. Note, no. 4152. 

a t  incidence. J .  Fluid Mech. 51, 1-14. 

a plane of symmetry. A.I .A.A.  J .  3,  75-83. 

VAN DYKE, M. 1969 Higher-order boundary layer theory. Ann. Rev. Pluid Mech. 1, 265- 
292. 

VVEDENSKAYA, N. D. 1966 Calculation of the boundary layer arising in a flow about a 

WANCI, K. C. 1971 On the determination of the zones of influence and dependence for 
cone under an angle of attack. Zh. ;iychisl. Mat. mat. Fizl. 6 ,  304-312. 

three-dimensional boundary-layer equations. J .  Fluid Mech. 48, 397-404. 


